arctriangle

本文最后更新于 2025年9月24日 下午

反三角函数公式汇总


一、基本恒等式

  1. 余角关系

    arcsin(x)+arccos(x)=π2arctan(x)+arccot(x)=π2arcsec(x)+arccsc(x)=π2arcsin(x) + arccos(x) = \frac{\pi}{2}\\\\ arctan(x) + arccot(x) = \frac{\pi}{2}\\\\ arcsec(x) + arccsc(x) = \frac{\pi}{2}

  2. 负数关系

    arcsin(x)=arcsin(x),arccos(x)=πarccos(x),arctan(x)=arctan(x),arccot(x)=πarccot(x)arcsin(-x) = -arcsin(x), \\\\ arccos(-x) = \pi - arccos(x), \\\\ arctan(-x) = -arctan(x), \\\\ arccot(-x) = \pi - arccot(x)

  3. 倒数关系

    arcsin(1x)=arccsc(x),arccos(1x)=arcsec(x),arctan(1x)=arccot(x)(x>0)arcsin\left(\frac{1}{x}\right) = arccsc(x),\\\\ arccos\left(\frac{1}{x}\right) = arcsec(x), \\\\ arctan\left(\frac{1}{x}\right) = arccot(x) \quad (x > 0)


二、导数公式

ddxarcsin(x)=11x2,ddxarccos(x)=11x2,ddxarctan(x)=11+x2,ddxarccot(x)=11+x2,ddxarcsec(x)=1xx21,ddxarccsc(x)=1xx21.\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}x} arcsin(x) &= \frac{1}{\sqrt{1 - x^2}}, \\ \frac{\mathrm{d}}{\mathrm{d}x} arccos(x) &= -\frac{1}{\sqrt{1 - x^2}}, \\ \frac{\mathrm{d}}{\mathrm{d}x} arctan(x) &= \frac{1}{1 + x^2}, \\ \frac{\mathrm{d}}{\mathrm{d}x} arccot(x) &= -\frac{1}{1 + x^2}, \\ \frac{\mathrm{d}}{\mathrm{d}x} arcsec(x) &= \frac{1}{|x|\sqrt{x^2 - 1}}, \\ \frac{\mathrm{d}}{\mathrm{d}x} arccsc(x) &= -\frac{1}{|x|\sqrt{x^2 - 1}}. \end{aligned}


三、积分公式

arcsin(x)dx=xarcsin(x)+1x2+C,arccos(x)dx=xarccos(x)1x2+C,arctan(x)dx=xarctan(x)12ln(1+x2)+C,arccot(x)dx=xarccot(x)+12ln(1+x2)+C.\begin{aligned} \int arcsin(x) \, \mathrm{d}x &= x arcsin(x) + \sqrt{1 - x^2} + C, \\ \int arccos(x) \, \mathrm{d}x &= x arccos(x) - \sqrt{1 - x^2} + C, \\ \int arctan(x) \, \mathrm{d}x &= x arctan(x) - \frac{1}{2} \ln(1 + x^2) + C, \\ \int arccot(x) \, \mathrm{d}x &= x arccot(x) + \frac{1}{2} \ln(1 + x^2) + C. \end{aligned}


四、运算性质

  1. 加减公式

    arctan(x)+arctan(y)=arctan(x+y1xy)(xy<1)arctan(x) + arctan(y) = arctan\left(\frac{x + y}{1 - xy}\right) \quad (xy < 1)

  2. 复合函数关系

    sin(arcsin(x))=x(x1),cos(arccos(x))=x(x1),tan(arctan(x))=x(xR)\sin(arcsin(x)) = x \quad (|x| \leq 1), \quad \cos(arccos(x)) = x \quad (|x| \leq 1), \quad \tan(arctan(x)) = x \quad (x \in \mathbb{R})


五、泰勒展开

  1. 反正切函数

    arctan(x)=xx33+x55x77+(x1)arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots \quad (|x| \leq 1)

  2. 反正弦函数

    arcsin(x)=x+16x3+340x5+(x<1)arcsin(x) = x + \frac{1}{6}x^3 + \frac{3}{40}x^5 + \cdots \quad (|x| < 1)


六、特殊值

xarcsin(x)arccos(x)arctan(x)00π2022π4π4π41π20π4\begin{array}{|c|c|c|} \hline x & arcsin(x) & arccos(x) & arctan(x) \\ \hline 0 & 0 & \frac{\pi}{2} & 0 \\ \frac{\sqrt{2}}{2} & \frac{\pi}{4} & \frac{\pi}{4} & \frac{\pi}{4} \\ 1 & \frac{\pi}{2} & 0 & \frac{\pi}{4} \\ \hline \end{array}


七、反三角函数的转换

arctan(x)=arcsin(x1+x2), arccot(x)=arctan(1x)(x>0)arctan(x) = arcsin\left(\frac{x}{\sqrt{1 + x^2}}\right), \\\\\ arccot(x) = arctan\left(\frac{1}{x}\right) \quad (x > 0)



arctriangle
https://www.mirstar.net/2025/09/20/arctriangle/
作者
onlymatt
发布于
2025年9月20日
许可协议